Carbon and oxygen isotope ratios of ecosystem respiration along an Oregon conifer transect: preliminary observations based on small-flask sampling.
نویسندگان
چکیده
Isotope ratio analyses of atmospheric CO(2) at natural abundance have significant potential for contributing to our understanding of photosynthetic and respiration processes in forest ecosystems. Recent advances in isotope ratio mass spectrometry allow for rapid, on-line analysis of small volumes of CO(2) in air, and open new research opportunities at the ecophysiological, whole-organism, and atmospheric levels. Among the immediate applications are the carbon and oxygen isotope ratio analyses of carbon dioxide in atmospheric air. Routine analysis of carbon dioxide in air volumes of approximately 50-300 &mgr;l is accomplished by linking a commercially available, trace gas condenser and gas chromatograph to an isotope ratio mass spectrometer operated in continuous-flow mode. Samples collected in the field are stored in either gas-tight syringes or 100-ml flasks. The small sample volume required makes it possible to subsample the air in flasks for CO(2) and then to sample the remaining air volume for the analysis of the isotopic composition of either methane or nitrous oxide. Reliable delta(13)C and delta(18)O values can be obtained from samples collected and stored for 1-3 days. Longer-term storage, on the order of weeks, is possible for delta(13)C measurements without drift in the isotope ratio signal, and should also be possible for delta(18)O measurements. When linked with an infrared gas analyzer, pump and flask sampling system, it is feasible to sample CO(2) extensively in remote forest locations. The air-sampling system was used to measure the isotope ratios of atmospheric CO(2) and to conduct a regression analysis of the relationship between these two parameters. From the regression, we calculated the delta(13)C of ecosystem respiration of four coniferous ecosystems along a precipitation gradient in central Oregon. The ecosystems along the coast-to-interior Oregon (OTTER) gradient are dominated by spruce-hemlock forests at the wet, coastal sites (> 200 cm precipitation annually) to juniper woodlands (20 cm precipitation) at the interior, dry end of the transect. The delta(13)C values of ecosystem respiration along this transect differed by only 1.3 per thousand (range of -25.2 to -23.9 per thousand ) during August at the peak of the summer drought. Following autumn rains in September, the delta(13)C of ecosystem respiration in the four stands decreased; overall the difference in the carbon isotope ratio of ecosystem respiration among sites increased to 3.9 per thousand (-26.8 to -22.9 per thousand ).
منابع مشابه
Carbon and oxygen isotope ratios of tree ring cellulose along a precipitation transect in Oregon, United States
[1] The carbon and oxygen isotopic compositions of tree ring cellulose were examined for trees along a precipitation gradient in western Oregon, United States. Two years of cellulose from four sites dominated by coniferous forests ranging in precipitation from 227 to 2129 mm were sampled in conjunction with studies that measured the dO and dC of ecosystem respiration. The mean tree ring cellulo...
متن کاملOxygen isotope content of CO2 in nocturnal ecosystem respiration: 1. Observations in forests along a precipitation transect in Oregon, USA
[1] The oxygen isotope content of nocturnal ecosystem respiration (dOR) was examined in forests along a precipitation gradient in Oregon, USA, to determine whether site-to-site variation in dOR was more strongly related to variation in d O of precipitation or to evaporative processes that isotopically modify water pools within ecosystems. Measurements were made over 4 years at sites ranging in ...
متن کاملIsotopic air sampling in a tallgrass prairie to partition net ecosystem CO2 exchange
[1] Stable isotope ratios of various ecosystem components and net ecosystem exchange (NEE) CO2 fluxes were measured in a C3-C4 mixture tallgrass prairie near Manhattan, Kansas. The July 2002 study period was chosen because of contrasting soil moisture contents, which allowed us to address the effects of drought on photosynthetic CO2 uptake and isotopic discrimination. Significantly higher NEE f...
متن کاملSeasonal and annual respiration of a ponderosa pine ecosystem
The net ecosystem exchange of CO2 between forests and the atmosphere, measured by eddy covariance, is the small difference between two large fluxes of photosynthesis and respiration. Chamber measurements of soil surface CO2 efflux (Fs), wood respiration (Fw) and foliage respiration (Ff) help identify the contributions of these individual components to net ecosystem exchange. Models developed fr...
متن کاملIsotopes in Environmental and Health Studies Continuous field measurements of δC-CO2 and trace gases by FTIR spectroscopy
Continuous analysis of the 13C/12C ratio of atmospheric CO2 (δC-CO2) is a powerful tool to quantify CO2 flux strengths of the two major ecosystem processes assimilation and respiration. Traditional laboratory techniques such as isotope ratio mass spectrometry (IRMS) in combination with flask sampling are subject to technical limitations that do not allow to fully characterize variations of atmo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tree physiology
دوره 18 8_9 شماره
صفحات -
تاریخ انتشار 1998